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Abstract

This paper investigates the predictive accuracy of stochastic models. In particular, a formulation is presented for the
impact of data limitations associated with the calibration of parameters for these models, on their overall predictive accu-
racy. In the course of this development, a new method for the characterization of stochastic processes from corresponding
experimental observations is obtained. Specifically, polynomial chaos representations of these processes are estimated that
are consistent, in some useful sense, with the data. The estimated polynomial chaos coefficients are themselves character-
ized as random variables with known probability density function, thus permitting the analysis of the dependence of their
values on further experimental evidence. Moreover, the error in these coefficients, associated with limited data, is propa-
gated through a physical system characterized by a stochastic partial differential equation (SPDE). This formalism permits
the rational allocation of resources in view of studying the possibility of validating a particular predictive model. A Bayes-
ian inference scheme is relied upon as the logic for parameter estimation, with its computational engine provided by a
Metropolis-Hastings Markov chain Monte Carlo procedure.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Predictive science can be viewed as the extrapolation of observed behavior to new, yet to be observed, con-
texts. Observed behavior typically reflects controlled laboratory experiments or accumulated field observa-
tions while the unobserved context refers to a target design or behavior at some unobserved instant in time
or space. The extrapolation from observed reality to predicted behavior is usually carried out by relying on
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expert opinion which is typically available either as a list of actions predicated on operational conditions, or as
a list of governing physical phenomena together with their associated mathematical forms. Either way, a pro-
cedure is typically developed for the operational implementation of this extrapolation, which could take one of
various forms, ranging from a code of practice to a computer code. A number of factors contribute to a dis-
crepancy between predicted and actual behavior. These clearly include limitations on the weight of experimen-
tally observed evidence on which the predictive process is predicated. Such limitations stem from, in addition
to observed variability in this evidence, its finiteness, both in terms of its temporal and spatial coverage as well
as in terms of its limited quantity. In addition to these information-related errors, discrepancies between pre-
dictions and reality can also be attributed to shortcomings in the extrapolation process, be it driven by empir-
ical or physical expert opinion, as well as by limitations on the implementation of this process, as manifested,
for instance, through a computational model.

The characterization of an error budget that describes in quantitative terms the contribution of the above
sources of error will permit the judicious allocation of resources between experimental, theoretical, and com-
putational efforts in order to achieve a target confidence in the associated predictions.

The present paper adopts a probabilistic framework for characterizing uncertainty associated with the task
of prediction. In doing so, it is emphasized that this probabilistic framework is merely adopted for conve-
nience and does not describe an intrinsic property of these errors. This convenience is manifested in that a
rigorous mathematical construction ensues that permits the structured statement of the problem.

In a series of previous publications, the authors have presented a mathematical framework for the charac-
terization and propagation of uncertainty in physical systems [7,15–20,26]. That work is based on the adap-
tation of multiple Wiener integral representations [40,5] to finite-dimensional spaces and their implementation
into a weighted residual scheme for the stochastic characterization of the solution of stochastic partial differ-
ential equations. The restriction of the representations to finite-dimensional uncertainty (i.e. stochastic pro-
cesses characterized by a finite-dimensional random vector) permits the generalization of the Wiener
constructions which had used polynomials orthogonal with respect to Gaussian measure. Extensions of that
work to the Askey scheme were recently developed [41,42] together with extensions using non-orthogonal rep-
resentations [1,3] and representations in terms of wavelets [23,24]. While the above extensions are limited to
representations in terms of independent random variables, extensions using finite-dimensional dependent ran-
dom vectors (such as appearing, for instance, in the finite-dimensional Karhunen–Loeve representation of an
arbitrary stochastic process) have also been completed [36]. These so-called polynomial chaos expansions, cou-
pled with stochastic projection mechanisms, provide a general method for characterizing the solution of prob-
lems of mathematical physics whose parameters have been described as stochastic processes. An analysis of
the error associated with this method has already been developed [4,3]. The mathematical foundation of these
developments, which permits their rigorous mathematical analysis, lies in functional analysis and in the obser-
vation that second-order random vectors (i.e. loosely speaking, those with finite second order statistics) form a
Hilbert space.

Implicit in all these developments is the assumption that the parameters in the governing equations have
been accurately characterized as stochastic processes. In this case, the formalism described above, based on
chaos expansions, can be viewed as an efficient procedure to propagate the probabilistic measures from the
system parameters to the solution, and as such appears to be an alternative to approaches based on Monte
Carlo sampling or perturbation expansions. As noted previously in Section 1, it is often the case that system
parameters are not known with enough resolution to permit their accurate characterization as stochastic pro-
cesses. In such cases, the approach based on chaos developments provides a unique perspective on the problem
as the sensitivity of the system parameters to additional information can be cast as perturbing their coordi-
nates with respect to the polynomial chaos, which in turn is readily described as perturbations in Hilbert
spaces. The impact of these perturbations on the chaos coordinates of the solution to the governing equations
can then be viewed as quantifying the impact of refining the probabilistic measure of the data on the predictive
capability of the mathematical model. Initial efforts in this direction have relied on the maximum-likelihood
arguments to compute estimates of the chaos coordinates of parameters from associated statistical samples [8].
The present work addresses this same problem using a Bayesian framework for parameter estimation. The
benefit of this approach lies in its ability to characterize the statistics of the estimates, thus enabling the deter-
mination of their accuracy and their sensitivity to further data. In addition, a propagation of the error asso-
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ciated with these estimates to the predictions of the stochastic governing equations is developed. This clearly
provides an essential ingredient for any model validation process. It is worth mentioning that the present
approach relaxes some restrictive assumptions of current procedures, [2,21], to characterizing the random
parameters of a stochastic system from limited data, in the sense that no particular form for the underlying
stochastic parameter is assumed. Moreover, two important features of the proposed technique are in its ability
to estimate the error associated with data limitation and also its adaptation to the already well-developed
stochastic Galerkin schemes.

The paper is organized as follows. Section 2 summarizes the task to be undertaken together with some of
the salient challenges. Following that, a Bayesian parameter estimator is employed in Section 3 to estimate
those chaos coefficients together with their asymptotic standard errors. Sections 4 and 5 focus on the repre-
sentation and propagation of the uncertainty associated with the above Bayesian estimates to the response
of a particular class of SPDE’s. Finally, in Section 6, a numerical experiment is performed to demonstrate
and delineate the performance of the proposed formalism.

2. Representation of random coefficients

Let aðx;xÞ : D� X! R denote the random field used to describe and provide a mathematical model of the
available experimental data. Here D is an open, bounded polygonal domain in Rd and is the spatial domain on
which a is defined, X is the set of elementary events on which a probability space is constructed. It is well
known that a(x,x) can be efficiently represented using the spectral decomposition of its corresponding two-
point correlation function [25]. Let a1,a2, . . . ,aM be M real row vectors in RN representing M independent
observations from random vector a(x):¼(a(x1,x), . . . ,a(xN,x)), and let C be the underlying covariance matrix
of a. Moreover, let N denote the set of observation points x1, . . . ,xN, i.e., N ¼ fxi 2 D; i ¼ 1; . . . ;Ng. Letting
�a ¼ 1

M

PM
i¼1ai, the unbiased estimate of C, namely Ĉ , can be obtained as
Ĉ ¼ 1

M � 1

XM

i¼1

ðai � �aÞTðai � �aÞ. ð1Þ
The Karhunen–Loeve representation of random vector a is thus given as,
aðxÞ ¼ �aþ
XN

i¼1

ffiffiffiffi
ki

p
gðiÞðxÞ/i; ð2Þ
where fkigN
i¼1 and f/ig

N
i¼1 are the eigenvalues and eigenvectors of Ĉ , respectively. Moreover, g(i), i = 1, . . . ,N,

are random variables whose realizations are obtained by
gðiÞj ¼
1ffiffiffiffi
ki

p haj � �a;/iil2
; j ¼ 1; . . . ;M ; ð3Þ
where h.,.il2
denotes the scalar product in RN . A reduced-order representation of random vector a(x) can be

obtained in the form
aðxÞ � �aþ
Xl

i¼1

ffiffiffiffi
ki

p
gðiÞðxÞ/i ð4Þ
for some l 6 N such that
Pl

i¼1ki=
PN

i¼1ki is sufficiently close to one. Based on Eq. (4), vector random variable
g:¼(g(1) . . . g(l)) has the following two properties
E½gðnÞ� ¼ 0; E½gðmÞgðnÞ� ¼ dmn; n;m ¼ 1; . . . ; l. ð5Þ

Accordingly, the covariance matrix of g is the l · l identity matrix, Il·l. Since, the underlying random field
a(x,x) is in general non-Gaussian, the random variables g(i) are generally non-Gaussian. In the sequel, the
goal is to approximate g by a non-Gaussian random l-vector ĝ such that ĝ and g have identical covariance
matrices, namely Il·l, and close marginal distributions. This is consistent with the observation that in many
situations of practical interest not enough data is available to approximate the joint density of random vector
g. This assumption is furthermore consistent with the assumption of independence between components of
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random vector ĝ. Generally, this is clearly not the case for arbitrary stochastic processes. While relaxing this
assumption presents no theoretical difficulties, it does, however, present a number of computational and
experimental challenges [8]. It will moreover be assumed that the mean and the dominant eigenspace of the
covariance matrix are invariant under a sequence of rank one perturbations associated with the assimilation
of additional measurement. This assumption permits the use of the eigenvectors /i and associated eigenvalues,
obtained from initial measurements, to perform the foregoing analysis. This assumption can be readily relaxed
by continually recomputing the dominant subspace as additional observations are obtained. Reminding that
the invariance assumption is with regards to the dominant subspace, and not a particular eigenvector, it is
noted that the stability of dominant subspaces under perturbations increases with their dimension.

For each i = 1, . . . ,l, let F gðiÞ denotes the marginal cumulative distribution function of g(i), then ĝðiÞ � F �1
gðiÞ

ðUðniÞÞ with UðniÞ ¼
R ni

�1
1ffiffiffiffi
2p
p eð�

z2

2 Þ dz and n1, . . . ,nl are independent standard normal random variables. More-

over, ĝðiÞ can be represented in an orthogonal expansion in terms of one-dimensional normalized Hermite
polynomials in ni [33,31] resulting in,
ĝðiÞ ¼
X1
j¼1

cðiÞj
�wjðniÞ; ð6Þ

�
Xp

j¼1

cðiÞj
�wjðniÞ; i ¼ 1; . . . ; l; ð7Þ
where
�wjðniÞ :¼ wjðniÞ E w2
j ðniÞ

h i� �1=2
�

; ð8Þ
and
w0ðniÞ ¼ 1;

w1ðniÞ ¼ ni;

wjþ1ðniÞ ¼ niwjðniÞ � jwj�1ðniÞ
ð9Þ
are the Hermite polynomials in ni, and finally
E w2
j ðniÞ

h i
¼ 1ffiffiffiffiffiffi

2p
p

Z þ1

�1
w2

j ðniÞe
�

n2
i

2

� �
dni. ð10Þ
An appropriate value for p depends on the degree to which g(i) deviates from a Gaussian variable; however, in
practice, a small p, e.g., p = 6, is sufficient for the relatively accurate representation of a large class of random
variables. For cases where a large value of p is required to accurately represent each ĝðiÞ, e.g. multi-modal ran-
dom variables [43], the above representation and accordingly the subsequent procedures may not be efficient in
their current format. Moreover, cðiÞj , the coefficients of expansions in (7), are required to satisfy the following
constraint associated with (5),
Xp

j¼1

ðcðiÞj Þ
2 ¼ 1; i ¼ 1; . . . ; l. ð11Þ
As indicated previously, the present construction yields the components of random vector ĝ ¼ ðĝð1Þ . . . ĝðlÞÞ
that are independent, in contrast with those of g which are, in general, only uncorrelated. Each ĝðiÞ is distrib-
uted approximately with the marginal distribution of g(i), the corresponding component of g. Moreover, the
covariance matrix of the random vector ĝ is also Il·l. Clearly, for the particular cases where only limited num-
ber of samples of g is available, the marginal distributions, F gðiÞ , cannot be approximated properly; therefore,
the true coefficients, cðiÞj , cannot be obtained by already available techniques [31,33]. The next section describes
a novel approach, that relies on Bayesian parameter estimation, to characterize these coefficients. Clearly, hav-
ing a statistical estimate of cðiÞj , the stochastic function a(x,x) can be reconstructed by simply replacing g with ĝ

in the representation of a. More precisely, the reconstructed random field â(x,x) on the set N is obtained by
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âðxÞ ¼ �aþ
Xl

i¼1

ffiffiffiffi
ki

p
ĝðiÞðxÞ/i. ð12Þ
Depending on the desirable degree of smoothness of a on D, one might replace /i and �a with their proper
interpolants in order to have representation of a on any point inside D.

It should be indicated at this point that other stochastic parameterizations of the variables ĝðiÞ are possible.
In particular, alternate representations [3,23,24,41] with respect to other measures (besides the Gaussian) are
also possible. The rate of convergence of the associated expansions will clearly depend on the particular rep-
resentation used. While, in this paper, the Gaussian chaos is exclusively used, the proposed method is quite
general, and can be applied to general chaos expansions.

3. Bayesian inference with Markov chain Monte Carlo

Bayesian inference provides a robust procedure for estimating the unknown coefficients cðiÞj in the above
parametric non-Gaussian expansion, Eq. (7), from observations g1, . . . ,gM. For the sake of simplicity, only
one component of random vector ĝ, namely ĝðkÞ, will be considered. Clearly all the following procedures apply
to other components in an identical manner, since by construction, components of the vector ĝ are indepen-
dent. Let c0 :¼ ðcðkÞ1 ; . . . ; cðkÞp Þ 2 K be the true value of coefficients in the polynomial chaos expansion of g(k) and
ĉ ¼ ðĉðkÞ1 ; . . . ; ĉðkÞp Þ 2 K its corresponding estimate. Since c0 has the property that

Pp
j¼1ðc

ðkÞ
j Þ

2 ¼ 1, it is an ele-
ment of the so-called Stiefel manifold Oðp; 1Þ. Therefore, the parameter set K is taken to be Oðp; 1Þ. Consider
a cost function L : K� K! R in the form,
L½c0; ĉ� ¼
1 if max

16i6p
jcðkÞi � ĉðkÞi j > D;

0 if max
16i6p

jcðkÞi � ĉðkÞi j 6 D

8><
>: ð13Þ
for some small D > 0. Then the Bayes estimate of c0 is ĉ for which the Bayes risk is minimum, i.e.,
ĉ ¼ arg min
f

EfL½c0; fðĝ
ðkÞ
1 ; . . . ; ĝðkÞM Þ�g; ð14Þ

� arg min
f

EfL½c0; fðg
ðkÞ
1 ; . . . ; gðkÞM Þ�g; ð15Þ
with f 2 K. Here, gðkÞ1 ; . . . ; gðkÞM are M observations of g(k). Since ĝðkÞ is constructed to have approximately the
same distribution as that of g(k), these observations are also assumed to correspond to ĝðkÞ. For the above
situation, the Bayes estimate can be shown to be the conditional mode of c given gðkÞ1 ; . . . ; gðkÞM , and is called
the maximum a posteriori probability estimate (MAP) of c [13,30]. Since an analytical expression for the dis-
tribution of c given gðkÞ1 ; . . . ; gðkÞM is usually not available a Markov chain Monte Carlo (MCMC) algorithm
[12,11] is proposed to draw samples form the posterior distribution of c, given observations gðkÞ1 ; . . . ; gðkÞM , thus
avoiding complex numerical integrations in high dimensions to form the posterior distribution, as required if
classical Bayesian inference were adopted. In particular, the Bayesian Inference with Metropolis-Hastings
algorithm (BIMH) is more suitable for the particular case addressed in this work as compared to a Gibbs sam-
pler (the most commonly used alternative to Metropolis-Hastings) version of MCMC [37]. The reason is par-
tially due to the fact that, while being required in the Gibbs sampling method, the distribution of any
component of c conditioned on the other components is not available. The main idea behind an MCMC is
to construct a Markov chain with a particular transition probability so that its stationary behavior is in accor-
dance with a target distribution. In the above, and in accordance with the Bayesian approach, c also refers to
realizations of the parameters being estimated.
3.1. BIMH Setup

Based on the Bayes rule one can write,
p½cjgðkÞ1 ; . . . ; gðkÞM � / pĝðkÞ ðg
ðkÞ
1 ; . . . ; gðkÞM jcÞ � pðcÞ; ð16Þ
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where p(c) is a prior density for c, which in the absence of prior information, is taken to be the uniform dis-
tribution on K [9]. Also, p½cjgðkÞ1 ; . . . ; gðkÞM � is the conditional or posterior density of c given the observations

gðkÞ1 ; . . . ; gðkÞM , and pĝðkÞ ðg
ðkÞ
1 ; . . . ; gðkÞM jcÞ is the likelihood of data or joint density of the observations, given c,

which is equal to
QM

j¼1pĝðkÞ ðg
ðkÞ
j jcÞ for the case of independent observations a1,a2, . . . ,aM. Let q(h|ci) be the

proposal distribution to generate a candidate state h given that the underlying Markov chain is currently at
state i, a state defined by ci, and let it be equal to p(h) as a possible proper choice. Therefore, the probability
of moving to the candidate state h simplifies to
qðh; ciÞ ¼ min
p½hjgðkÞ1 ; . . . ; gðkÞM �qðcijhÞ
p½cijg

ðkÞ
1 ; . . . ; gðkÞM �qðhjciÞ

; 1

( )
; ð17Þ

¼ min
PM

j¼1pĝðkÞ ðg
ðkÞ
j jhÞ

PM
j¼1pĝðkÞ ðg

ðkÞ
j jciÞ

; 1

( )
. ð18Þ
Remark 1. Having the above setting for the proposal distribution, the underlying Markov chain is known as
an independent Metropolis chain. Since the proposal distribution q(Æ) is, almost everywhere, strictly positive on
the corresponding Stiefel manifold, the associated kernel is irreducible and aperiodic, [29,39]. Thus one can
show that the underlying Markov chain will be stationary, and therefore the proposed algorithm samples from
the posterior distribution p½cjgðkÞ1 ; . . . ; gðkÞM �, provided that a long enough Markov chain is constructed. The
following algorithm is proposed for sampling from the posterior distribution of c, p½cjgðkÞ1 ; . . . ; gðkÞM �.
3.2. Algorithm of BIMH

(1) Choose the length of the burn-in period tb 2 N and an initial state c1. Set j = 1.
(2) Estimate PM

j¼1pĝðkÞ ðg
ðkÞ
j jc1Þ.

(3) Generate candidate state h according to p(Æ).
(4) Estimate PM

j¼1pĝðkÞ ðg
ðkÞ
j jhÞ.

(5) Generate U from U(0,1) distribution. Set cj+1 = h if U 6 q(h,cj). Otherwise, set cj+1 = cj.
(6) Repeat steps 2–5 sufficiently large, say s 2 N, number of times with s > tb.

Notice that the burn-in period, tb, ensures the dissipation of the initial condition effects. Having s � tb real-
izations cj from posterior distribution of c as output of the above algorithm, one can easily obtain an estimate
for the mode of distribution of cj’s as an approximation of true c0.

Having enough samples from the posterior distribution of c obtained from the stationary part of the Mar-
kov chain, one can claim the convergence of the above estimate. The following theorem supports this claim for
the case of continuous parameter space [13]:

Theorem 1. If ĉ is defined on a compact set and A is a neighborhood of c0, the true vector of parameters, with
non-zero prior probability, then P ðĉ 2 AjgðkÞ1 ; . . . ; gðkÞM Þ ! 1 as M!1.
3.3. Estimation of likelihood function

Clearly, in the above procedure, the likelihood function, PM
j¼1pĝðkÞ ðg

ðkÞ
j jhÞ, needs to be estimated. A naive

estimate would be to sample the chaos basis and evaluate the likelihood at each gðkÞj . Alternatively, a more
efficient algorithm would be a kernel density estimation[14]. More specifically, let K : R! R be a kernel func-
tion, e.g. KðuÞ ¼ 1ffiffiffiffi

2p
p expð�u2

2
Þ known as a Gaussian kernel. Let �gðkÞ1 ; �gðkÞ2 ; . . . ; �gðkÞn be n independent samples from

pgðkÞ conditioned on h obtained by sampling the chaos basis associated with ĝðkÞ. Then the likelihood function
for each gðkÞj ; j ¼ 1; . . . ;M ; can be approximated as
pĝðkÞ ðg
ðkÞ
j jhÞ �

1

n

Xn

i¼1

1

h
K

gðkÞj � �gðkÞi

h

 !
. ð19Þ
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Clearly the accuracy of the above approximation depends on the choice of bandwidth h. For the above case,
based on Scott’s rule-of-thumb [34], a suitable value for h is h � 1.06n�0.2.

4. Uncertainty quantification for Bayesian estimates

As mentioned previously, the Bayes estimate, ĉ, is a function of gðkÞ1 ; . . . ; gðkÞM , and thus, for a finite M, varies
with the observation set. Accordingly, it is desirable to investigate the performance of the estimator in the
presence of such dependence. This can be achieved by estimating the standard error or confidence intervals
in the parameter estimates using resampling techniques (e.g. Bootstrap or Jackknife) when the estimate is com-
putationally inexpensive [22,38]. Alternatively, large sample asymptotic behavior of the estimator can be relied
upon, when it exists, to approximate its behavior. In the present work, for moderate values of p, i.e. the dimen-
sion of unknown parameter vector c0, the estimate ĉ could be computationally expensive; therefore, the latter
approach is followed in order to measure the variability of the chaos coefficient estimates of (7).

Under some regularity conditions, the fundamental result from the asymptotic, large-sample, Bayesian
inference is that as more data is assimilated, the posterior distribution of the parameter vector approaches
a multivariate normal distribution [13], as explained in the following theorem:

Theorem 2 (cf. [13,30]). Under some regularity conditions (notably that the likelihood is a continuous function of

c and the true vector of parameters c0 not be on the boundary of the set to which c belongs), as M!1, the

posteriori distribution of ĉ approaches normality with mean c0 and covariance matrix (MJ(c0))�1, where J is the

Fisher information matrix. In other words,
ffiffiffiffiffi
M
p
ðĉ� c0Þ!

dist
Nð0; Jðc0Þ

�1Þ. ð20Þ

In practice, for M reasonably large, ĉ is approximately N(c,(MJ(c))�1) distributed when c is chosen close to

the unknown c0. Following Theorem 1, c is usually approximated by ĉ for the mean and also for evaluation of
the Fisher information matrix J(c) [37,13]. An important corollary of the above theorem is that the posterior
mode, ĉ, is consistent estimate for c0; that is, ĉ converges in probability to c0 as M!1.

In order to fully characterize the probabilistic behavior of the chaos coefficients, c, procedures for evaluat-
ing the Fisher information matrix, JðĉÞ, must be developed. The next subsection addresses this issue.

4.1. Estimation of the Fisher information

Under suitable regularity conditions, the Fisher information matrix associated with the vector c under the
likelihood pĝðkÞ ðĝðkÞjcÞ is defined as
JðcÞ ¼ �E
o2lðcÞ
oc ocT

� �
¼ E

olðcÞ
oc

olðcÞT

oc

" #
; ð21Þ
where l(c) is the log-likelihood of data. In situations, including the present work, where the closed form of the
likelihood is not available, the Fisher information cannot be computed analytically and thus has to be numer-
ically approximated. For i.i.d. cases this approximation can be achieved using the so-called empirical Fisher

information Ĵ(c) defined by [27,28,35]
ĴðcÞ ¼
XM

i¼1

siðcÞsiðcÞT �
1

M

XM

i¼1

siðcÞ
 ! XM

i¼1

siðcÞ
 !T

; ð22Þ
where siðcÞ ¼ oliðcÞ
oc
j
ĝðkÞ¼ĝðkÞi

is the derivative of the individual log-likelihood evaluated at ĝðkÞi and is called the

score function. While being a consistent estimator of J(c), Ĵ(c) is obtained by a simple finite difference scheme
for the estimation of score functions. To simplify the discussion, the asymptotic behavior of the Bayes esti-
mates of the chaos coefficients is approximated as
ffiffiffiffiffi

M
p
ðĉ� c0Þ!

dist
Nð0; ĴðĉÞ�1Þ. ð23Þ
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4.2. Uncertainty modelling for the system parameter

Following the above probabilistic representation of the chaos coefficients, one can reconstruct each random
variable ĝðiÞ simply by replacing ĉj

ðiÞ with ~cj
ðiÞ where, for each i, ~cj

ðiÞ are jointly Gaussian random variables with
mean ĉj

ðiÞ and covariance matrix ðMĴðĉÞÞ�1 and are independent from fnigli¼1, i.e.,
ĝðiÞ ¼
Xp

j¼1

~cj
ðiÞ�wjðniÞ. ð24Þ
Accordingly, the final representation of â on the set N is obtained by substituting Eq. (24) into Eq. (12),
â ¼ �aþ
Xl

i¼1

ffiffiffiffi
ki

p Xp

j¼1

~cj
ðiÞ�wjðniÞ

 !
/i. ð25Þ
It is worth noting that for different indices i, the random vectors ~cðiÞ :¼ ½~cðiÞ1 ; . . . ;~cðiÞp � are independent from each
other, since the corresponding Markov chains are constructed independently. An interesting feature of Eq.
(25) is that the ni’s capture the dimensions representing the intrinsic uncertainty of â, while ~cj

ðiÞ’s reflect the
uncertainty due to lack of data in the estimation of the true parameters c0. As is recognized from (23), the
latter uncertainty can be reduced by gathering more observations from â while the former uncertainty is irre-
ducible. Approximation (25) can be extended to the whole domain D. Specifically, and depending on the desir-
able degree of smoothness of the final representation, this can be simply done using a suitable interpolation,
e.g. Lagrange interpolation, radial basis functions, B-Spline, etc., of â on the set N. This results in the general
form,
âðx;xÞ ¼ ~�aðxÞ þ
Xl

i¼1

ffiffiffiffi
ki

p Xp

j¼1

~cj
ðiÞ�wjðniÞ

 !
~/iðxÞ; ð26Þ
where ~�aðxÞ and ~/iðxÞ are the corresponding interpolants of �a and /i, respectively.
The next section addresses the propagation of the uncertainties in the estimation of coefficients c0’s to the

response of a system governed by an SPDE with stochastic input and deterministic operator. While the exten-
sion to SPDE with stochastic parameters can be readily developed it risks to obscure the essential contribution
of the present work, and will therefore not be presented here.
5. Uncertainty propagation

Consider the stochastic linear elliptic boundary value problem, with deterministic operator and stochastic
input, which consists of finding a stochastic function uðx;xÞ : �D� X! R, such that the following equation
holds almost surely in X,
�r.ðkðxÞruðx;xÞÞ ¼ aðx;xÞ; x 2 D;

uðx;xÞ ¼ 0; x 2 oD;
ð27Þ
where
0 < kmin 6 kðxÞ 6 kmax <1 ð28Þ
a : D� X! R is a stochastic function with continuous and square-integrable covariance function, X is the set
of elementary events, and x 2 X. For the case of physical systems discussed in previous sections, one has
a(x,x):¼â(x,x) = a(x,n1(x), . . . ,nq(x)) where fniðxÞgq

i¼1 is the set of real mutually orthonormal Gaussian ran-
dom variables with mean zero. Here q is the number of effective coordinates in the stochastic dimension of the
problem.

For the sake of completeness the fundamental concepts of the Stochastic Projection approach are briefly
reviewed next [20].
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5.1. Spectral stochastic finite element method (SSFEM)

5.1.1. Variational formulation

The analysis of the numerical approximation of stochastic functions can be greatly facilitated by using a
tensor product framework. Consider two domains x 2 D, x 2 X, let H 1

0ðDÞ be the subspace of H 1ðDÞ consist-
ing of functions which vanish on oD and are equipped with the norm kvkH1

0
ðDÞ ¼ f

R
D
jrvj2 dxg

1
2, also let L2(X)

be the space of random variables with finite variance defined on X, then the tensor space H 1
0ðDÞ � L2ðXÞ is the

completion of the formal sums u(x,x)=
P

i;j¼1;...;nviðxÞwjðxÞ, fviðxÞg � H 1
0ðDÞ, {wj(x)} � L2(X), with respect to

the inner product
ðu; ~uÞH1
0
ðDÞ�L2ðXÞ ¼

X
i;j

ðvi;~viÞH1
0
ðDÞðwj; ~wjÞL2ðXÞ. ð29Þ
Consider the tensor product Hilbert space H ¼ H 1
0ðDÞ � L2ðXÞ equipped with inner product

ðv; uÞH ¼ E½
R
D
rv 	 ru dx�. Construct the bilinear form B : H � H ! R by
Bðv;wÞ :¼ E
Z
D

krv 	 rw dx
� �

8v;w 2 H . ð30Þ
By the assumption of (28) on k(x), the continuity and coercivity of the bilinear form B are guaranteed,
therefore by the Lax–Milgram lemma, [6], the following variational formulation has a unique solution
in H:
Bðu; vÞ ¼LðvÞ 8v 2 H ; ð31Þ

where
LðvÞ :¼ E
Z
D

av dx
� �

8v 2 H ð32Þ
is a bounded linear functional.
5.1.2. Polynomial chaos expansion

A second-order random variable v(x) can be represented as [5]
vðxÞ ¼ x0H 0 þ
X1
i1¼1

xi1 H 1ðni1ðxÞÞ þ
X1
i1¼1

Xi1

i2¼1

xi1i2 H 2ðni1ðxÞ; ni2ðxÞÞ

þ
X1
i1¼1

Xi1

i2¼1

Xi2

i3¼1

xi1i2i3 H 3ðni1ðxÞ; ni2ðxÞ; ni3ðxÞÞ þ 	 	 	 ; ð33Þ
where H nðni1 ; . . . ; ninÞ is a Hermite polynomial of order n in variables ðni1 ; . . . ; ninÞ. It will be notationally more
convenient to rewrite the above equation in the form
vðxÞ ¼
X1
j¼0

x̂jwjðxÞ; ð34Þ
where wj(x):¼wj(n(x)) and n(x) is the vector of independent Gaussian random variables ðni1 ; . . . ; ninÞ. Also
there is a one-to-one correspondence between the functionals wj(Æ) and H(Æ) and also between the associated
coefficients. For computational purposes, the above series should be truncated with respect to both the dimen-
sion of vector n and also the order of Hermite polynomials. An important property of the above polynomials
which will be employed in the following sections is their orthogonality with respect to the Gaussian probability
measure, namely
E½wiwj� ¼ E½w2
i �dij; ð35Þ
where dij is the Kronecker delta.
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5.1.3. Galerkin projection

The SSFEM seeks the solution of the variational problem of (31) on the tensor product space consisting of
the finite-dimensional space of piecewise continuous polynomials corresponding to a partition Th of D as the
spatial discretization and the space of the random variables spanned by polynomial chaos [20] of order up to p
as the discretization of the random dimension of u(x,x). More specifically, consider a family of finite element
approximation spaces, X :¼ X h � H 1

0ðDÞ, consisting of piecewise linear continuous functions on the corre-
sponding triangulation of D, and Y :¼ Y p ¼ 
p

i¼1Hi � L2ðXÞ, where Hi represents the ith Homogeneous
chaos, the space spanned by all ith order Hermite polynomial chaos, constructed from the set fniðxÞgq

i¼1,
[20]. Then the finite-dimensional Galerkin approximation of the exact solution u(x,x) on the tensor product
space of X and Y is obtained by solving
BðuX ;Y ; vÞ ¼LðvÞ 8v 2 X � Y . ð36Þ

More clearly, one can write the approximation solution
uX ;Y ðx;xÞ ¼
X

i;j

uijN iðxÞwjðxÞ; ð37Þ
and use the test function v(x,x) = Nk(x)wl(x) to find the coefficients uij. Then (36) gives the following system
of linear equations for uij
X

i;j

ðE½wlwjðkrNi;rN kÞL2ðDÞ�Þuij ¼ E½wlðað.,.Þ;N kÞL2ðDÞ� 8k; l; ð38Þ
where fN iðxÞgN
i¼1 and fwiðxÞg

P
i¼0 are the basis for X and Y, respectively, and a(x,x) is substituted from (26).

Thanks to the orthogonality of the polynomial chaos basis, the above system of equations, for the case of
deterministic operator, simplifies to the solution of P + 1 linear systems of equations each of size N · N.
5.2. Propagation for the case of â

The solution of Eq. (27) when the input is modeled by Eq. (26) is obtained by the procedure introduced in
the previous subsection, which is summarized in the following proposition.

Proposition 1. Let
uðx;xÞ ¼ �uðxÞ þ
Xl

i¼1

Xp

j¼1

XN

k¼1

uðiÞjk
�wjðniÞN kðxÞ ð39Þ
be the discretized solution of Eq. (27) when the input is
âðx;xÞ ¼ ~�aðxÞ þ
Xl

i¼1

ffiffiffiffi
ki

p Xp

j¼1

ĉj
ðiÞ�wjðniÞ

 !
~/iðxÞ; ð40Þ
then the discretized solution of Eq. (27) under Eq. (26) is given by
uðx;xÞ ¼ �uðxÞ þ
Xl

i¼1

Xp

j¼1

XN

k¼1

ð1þ bðiÞj Þu
ðiÞ
jk

�wjðniÞNkðxÞ; ð41Þ
where bðiÞj :¼ ~cðiÞj �ĉðiÞj

ĉðiÞj

.

Proof. First recall that ~cðiÞ, i = 1, . . . ,l, are independent and asymptotically Gaussian. The derivation of (41) is
then obtained by first applying the linear transformation ðMĴðĉðiÞÞÞ�1, on the vector random variable, ~cðiÞ,
leading to l · p independent standard Gaussian random variables, ffiðxÞgl�p

i¼1 . Following that, the polynomial
chaos expansion of the response as described in Section (5.1.2) is developed in terms of the random variables
ffiðxÞgl�p

i¼1 and fniðxÞgli¼1. Finally, the orthogonality of chaos polynomials along with the linearity of the oper-
ator with respect to the terms in â can be used to infer the result. h
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Remark 1. The bases �wjðniÞ are themselves among the polynomial chaos basis constructed from fniðxÞgli¼1,
when normalized.

Remark 2. There is only need to solve l + 1 system of equations with size N · N to fully characterize Eq. (39)
and hence Eq. (41).

Remark 3. Following the asymptotic approximation of Eq. (23), the variability in estimates of the polynomial
chaos coefficient of (7) does not affect the response mean of (27). In other words only ĉðiÞ’s are sufficient to
estimate �uðxÞ.

Remark 4. Based on Proposition 1, the variance of u(x,x) at each finite element node l = 1, . . . ,N is given by
E ðuðxl;xÞ � �uðxlÞÞ2
h i

¼
Xl

i¼1

Xp

j¼1

uðiÞjl

� �2

1þ qðiÞj

� �2
� 	

; ð42Þ
where
qðiÞj :¼
MĴðĉðiÞÞ

 ��1
h i1

2

jj

ĉðiÞj

ð43Þ
is the coefficient of variation of the jth entry of the random vector ~cðiÞ. Having the above representation of the
response variance, one readily has the contribution of variability of estimates of the polynomial chaos coef-
ficient towards the overall variance at any point on D.
6. Numerical example

As an example, consider the following one-dimensional problem:
� d2uðx;xÞ
dx2

¼ aðx;xÞ; x 2 D ¼ ð�0:5;þ0:5Þ

uð�0:5;xÞ ¼ 0; ð44Þ
where a(x,x) is the underlying input function for which observations are available on the set
N = {�0.5,�0.25, 0,0.25,0.5}. In order to evaluate the performance of the proposed procedures, a random field
with known probabilistic structure is assumed. Limited number of realizations of the process on a set of obser-
vation points, N, inside D are then recorded. It is assumed that the dominant eigenspace of the associated covari-
ance matrix of the observations as well as the mean of the observations are close enough to the corresponding
exact values, thus enabling the verification of the results of the proposed algorithm. Clearly, for practical cases
this assumption can be relaxed, the mean and the dominant subspace are re-computed as observations are col-
lected. The only other inputs to the algorithm is the recorded data along with the geometry of the domain. After
estimating the unknown parameters, the marginal distribution of the original process and those of the recon-
structed one are compared. Furthermore, the variability of the parameter estimates are propagated to the re-
sponse of (44) and the effect of such variability on the statistics of the solution can then be analyzed.

6.1. Generation of artificial data

Let G(x,x) be a random field on D given by
Gðx;xÞ :¼
X5

i¼1

ffiffiffiffi
ki

p
uiðxÞmiðxÞ. ð45Þ
Here fkig5
i¼1 are the eigenvalues of the positive definite matrix CG with [CG]ij = 0.3exp(�0.25|i � j|/1.8) and

i,j = 1, . . . , 5. The matrix CG defines the covariance of random variables G(xi,x) with xi 2 N =
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{�0.5,�0.25,0,0.25, 0.5}. Moreover, ui(x) is the piecewise linear interpolant of components of ith eigenvector
of CG, and m1, . . . ,m5 are independent identically distributed standard normal random variables. Let
E
ig

en
va

lu
e

a

aðx;xÞ :¼ eGðx;xÞ; x 2 D ð46Þ

define the underlying random field representing the right-hand side (RHS) of Eq. (44). The reliability of the
estimates are expected to increase as more observations of a are made available. To investigate this behavior,
four cases of M = 20,30,50,100 are considered. For each case the observations consist of randomly generated
realizations of a on the set N, as shown in Fig. (1) for the case of M = 50.

6.2. Characterization of a

Based on the eigenvalues of Ĉ associated with observations of a, as shown in Fig. (2), a value of l = 2 is
deemed suitable for the approximation of the random field a. Hence, only two random variables, namely g(1)

and g(2), are sufficient for representing the variability in a. Having realizations of the field a, one can obtain the
corresponding realizations of g(1) and g(2) according to Eq. (3). A fourth-order Hermite polynomial expansion
for g(1) and g(2), in different dimensions, is assumed to well represent those random variables. More precisely,
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Fig. 1. Realizations of random field a on the set N, M = 50.
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Fig. 2. Eigen pairs of the covariance matrix Ĉ.
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ĝð1Þ ¼
X4

j¼1

cð1Þj
�wjðn1Þ and ĝð2Þ ¼

X4

j¼1

cð2Þj
�wjðn2Þ; ð47Þ
where n1 and n2 are independent standard normal random variables. Now the BIMH algorithm is imple-
mented in order to estimate the unknown coefficients, cð1Þj and cð2Þj , for j = 1, . . . , 4 in the above expansions.
For each expansion one Markov chain is run for 20,000 steps (i.e. s = 20,000) and the burning period, tb,
is taken to consist of 5,000. To preserve the variance of each random variable g(1) and g(2), the proposal can-
didates of cð1Þj , j = 1, . . . , 4, and also cð2Þj , j = 1, . . . , 4, are each sampled uniformly, following [9], on the Stiefel
manifold Oð4; 1Þ. Based on the last 15,000 samples of each cð1Þj and cð2Þj conditioned on realizations of g(1) and
g(2), the MAP estimate of cð1Þj and cð2Þj for j = 1, . . . , 4 is obtained. As more data are used to estimate these
parameters, the posterior distribution of the parameters approach that of a Gaussian random variable cen-
tered around the estimate. Fig. (3) shows the histogram of samples from the posterior distribution of cð1Þ2 of
the unknown parameters obtained from the MH algorithm of Section (3.2), for various values of M.
Fig. (4) shows similar results for cð2Þ3 .

To verify the accuracy of the above estimates, the marginal density of g(1) and g(2) and their corresponding
approximates for M = 20,30,50,100 are compared in Fig. (5). Notice that the exact marginal distribution of
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Fig. 3. Histogram of the posteriori samples of cð1Þ2 : (a) M = 20, (b) M = 30, (c) M = 50, (d) M = 100.
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−2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

η(1)

p η(1
)

Exact
M=100
M=50
M=30
M=20

a

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

η(2)

p η(2
)

Exact
M=100
M=50
M=30
M=20

b

Fig. 5. Comparison of the exact and the corresponding estimates of g(1) and g(2): (a) g(1), (b) g(2).
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g(1) and g(2) are easily obtained by drawing large number of samples from the original a and consequently from
g(1) and g(2).

Moreover, since the underlying field a is known, the marginal distribution of a(xi,x) for each xi 2 N is
exactly available and therefore can be compared with those of the reconstructed field. Based on Eq. (26),
the effect of uncertainty of the estimates of the parameters are included in such comparison and shown in
Fig. (6).

As is clear from Fig. (6), as more data are incorporated in the estimation of parameters, not only do the
estimates represent the corresponding exact densities more accurately, but also the confidence in the estimates
increases. This is consistent with the results associated with the variance of a, at any spatial point xi 2 N, as
shown in Fig. (7).

6.3. Propagation of â

The SSFEM approach described in Section (5) is implemented to propagate â through Eq. (44). Particu-
larly, a uniform mesh of linear elements with size h = 0.125 is used to partition D. A fourth-order polynomial
chaos in two dimensions is used to discretize the random dimension associated with u(x,x). To illustrate the
effect of the parameter variabilities of â on the response of (44), the variance of the exact solution, when the
RHS is modeled by a, is compared with the variance of â for M = 20,30,50,100.
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Fig. 6. Probability density function of a(x = �0.25) with 95% confidence intervals around the estimated density: (a) M = 20, (b) M = 30,
(c) M = 50, (d) M = 100.
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As observed from Fig. 8, as more data are used to characterize a, the variability of response associated with
the estimates reduces to zero. For the particular choice of this example the largest variability corresponds to
x = 0 (Fig. 8). This is more investigated by looking at the probability distribution of marginal of u at x = 0 in
Fig. 9.

A careful observation of the above results highlights the significance of adaptivity with respect to the num-
ber of experimental data points used in calibrating the stochastic system parameters. More specifically, both
the estimates and the associated statistical confidence are affected by the experimental sample size used in the
estimation algorithm, and the accuracy of both quantities increases with more observations. This parallels the
concept of error analysis in the finite element solution of deterministic partial differential equations where both
the approximate solution and the associated a posteriori error estimates are obtained more accurately as the
descritization spaces are enriched. It is noted that this parallelization between the deterministic and the sto-
chastic cases is greatly facilitated by the product space constructions and associated projections adopted in
conjunction with the polynomial chaos decompositions.

It is finally noted that recent efforts at modeling epistemic uncertainty [10] have constructed polynomial
chaos representations that are consistent, in either a distributional or an almost sure sense, with some soft con-
straints such as bounds on the values of the probability density function, or the covariance function [32]. The
present formulation provides a construction procedure for these representations starting directly from
observations.
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Fig. 8. Variance of u(x) when the RHS is modeled with â (for M = 20, 30, 50 and 100) and a (exact solution).
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Fig. 9. Probability density function of u(x = 0) with 95% confidence intervals around the estimated density: (a) M = 20, (b) M = 30, (c)
M = 50, (d) M = 100.
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7. Conclusion

A Bayesian parameter estimation approach has been proposed to construct a polynomial chaos model of
random field for which only limited number of data observed at a limited number of locations on its domain is
available. The performance of the proposed methodology has been evaluated based on a simple random field
whose probabilistic structure is known. Cases corresponding to various amounts of available data are consid-
ered. For each one of these cases, the associated variability of the estimates is approximated based on the
asymptotic behavior of the MAP estimator. In particular, fairly close match between the exact and estimated
quantities of interest is observed. Furthermore, the effect of such variability on the response of a particular
stochastic system has also been quantified through the well-developed stochastic projection scheme. Having
such information helps one to develop adaptivity procedures, with respect to the input information to a sys-
tem, for refinement of the model parameters. It is worth mentioning that the associated Markov chains for the
various random variables, g(i), are independent from each other, and the whole procedures thus ends itself to
very efficient parallelism.
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